
FNAL E907

MIPP Offline Software Users Manual

Version 0.2

Compiled on March 16, 2011

1

Contents

1 Overview 3
1.1 Programming Tools . 3

1.1.1 C++ . 3
1.1.2 STL: http://www.sgi.com/tech/stl/ 4
1.1.3 ROOT: http://root.cern.ch/ 4
1.1.4 PostgreSQL, XML, and all that 4

1.2 Code Management Tools . 4
1.2.1 CVS . 4
1.2.2 SRT . 5

1.3 MIPP Offline Software Packages 5
1.3.1 Detector Geometry . 5
1.3.2 Simulation . 5
1.3.3 Data Format and I/O 6
1.3.4 Reconstruction and Analysis 7
1.3.5 Tracking . 7
1.3.6 Particle ID . 8
1.3.7 Miscellaneous Packages 9

2 The Event Data Structure 10
2.1 The event structure . 10

2.1.1 Where is the data? edm dump 12
2.1.2 Handling Errors: EDMException 12

3 Analysis and Reconstruction: anamipp 14
3.1 Getting started with the Demo package 14

3.1.1 Running anamipp . 15
3.1.2 Job description XML documents 16
3.1.3 Output from anamipp 17

2

3.2 Job Modules . 17
3.2.1 DemoModule.h . 18
3.2.2 DemoModule.cxx . 18
3.2.3 Other methods . 21
3.2.4 Configuration . 21

4 Monte Carlo 22
4.1 Event Generation . 22

4.1.1 FLUKA . 22
4.1.2 DPMJET . 22

4.2 e907mc . 23
4.2.1 Execution details . 23
4.2.2 How to Run It . 24
4.2.3 Configuring Execution 24
4.2.4 Reconstructing Monte Carlo 25

5 The MIPP Event Display: evd 26
5.1 Starting the Event Display . 26
5.2 Event Display Windows . 26

5.2.1 Full Display . 27
5.2.2 Tracking Display . 27
5.2.3 TPC Display . 27
5.2.4 MC Information . 27

5.3 Running a Job in the Event Display 28

6 Data Analysis with the DST 29
6.1 Format of the DST - Round 2 29

6.1.1 The MIPPEventSummary Class 29
6.1.2 The MIPPTrackSummary Class 31
6.1.3 The MIPPVertexSummary Class 31

6.2 Format of the DST - Round 3 31
6.3 Getting Started With the DST 33

7 Retrieving MIPP data from Enstore 46
7.1 Data storage system documentation 46
7.2 Organization of MIPP Enstore area 46
7.3 On e907ana computers . 47
7.4 Through kerberized FTP . 47

3

7.4.1 Hints . 48

8 MippDatabase: SQL database interface 49
8.1 Introduction . 49
8.2 To-Do list . 49
8.3 Underlying SQL software . 49
8.4 Setup for PostGreSQL . 50

8.4.1 PostGreSQL on e907anaX/e907daq 51
8.4.2 Remote access . 52
8.4.3 Database backup . 52

8.5 MIPP specific code . 53
8.6 Types of predefined tables . 53
8.7 XML interface . 54
8.8 Special characters . 56
8.9 Concrete example: Ckov cable map 56

8.9.1 Define and load a table into the database 56
8.9.2 Retrieving data from the database in MIPP executables 60
8.9.3 Adding data to tables in C++ code 61

8.10 MippDatabase Classes . 63
8.10.1 SQL basics . 63
8.10.2 Initialization . 63
8.10.3 Retrieving a table . 63
8.10.4 MdbDatabase class . 64
8.10.5 Database variables . 64
8.10.6 Selecting a subset of rows 65
8.10.7 Creating XML files from a database table 67
8.10.8 The MdbAbsRelDBTable class 67

9 Residual corrections to TPC hits: TPCResCor 69
9.1 What is TPCResCor? . 69
9.2 Method . 69
9.3 Using TPCResCor . 70
9.4 Updating TPCResCor . 71
9.5 Database Tables . 72

4

Chapter 1

Overview

This chapter is intended to give the user a quick introduction to the broad
features of the MIPP software. Not too many how-to details but the big
picture. The main web page for the MIPP offline is here:

http://ppd.fnal.gov/experiments/e907/OfflineSoftware/

and should be the first place you look for information. If you don’t find what
you’re looking for, complain and we’ll add it.

If you start from scratch with the MIPP software, you’ll probably want
to make yourself a test code release using SRT. You’ll then probably want to
add a package to the release or check out an existing package from the MIPP
CVS repository. You’ll edit the C++ code you find there, maybe booking
some histograms and filling them using the ROOT package. When you’re done
you’ll commit your changes back to the CVS repository.

1.1 Programming Tools

Here I’ll list the basic tools one needs to have at least a passing understanding
of to work with the MIPP software.

1.1.1 C++

The MIPP software is mostly written in C++ although there is still some
Fortran floating around the edges. In general, new software written for MIPP
should be written in C++. This manual cannot teach you C++, but you
can get an idea of what C++ looks like by browsing the code:

5

http://enrico1.physics.indiana.edu/mipp/doxygen/

offline/html/files.html

and by reading the coding conventions at:

http://ppd.fnal.gov/experiments/e907/OfflineSoftware/

CodingConventions/

The coding conventions were gleaned from several sources and provide
some order to the large variations in syntax that C++ allows and include
some “best practices” tips.

1.1.2 STL: http://www.sgi.com/tech/stl/

STL stands for the “standard template library”. While it is technically an
extension of C++, it is now a standard part of the language. STL provides
software for managing things like vectors, lists, maps, as well as standard
searching and sorting routines. A must-know for a C++ programmer.

1.1.3 ROOT: http://root.cern.ch/

ROOT is a large software tool kit provided by Rene Brun et al. and is roughly
the C++ equivalent of what CERNLIB was for FORTRAN. ROOT provides
I/O, GUI’s, histogramming, and analysis tools. Some of ROOT’s function-
ality duplicates things that are in the STL. Since STL is an ANSI standard,
MIPP prefers the use of STL before ROOT if one has a choice.

1.1.4 PostgreSQL, XML, and all that

These are packages for managing input data from various sources. Post-
greSQL handles queries to a database. XML provides a well defined format
for exchanging text-formatted data based on the HTML markup language.
Let’s not worry about these just yet...

1.2 Code Management Tools

1.2.1 CVS

CVS is the program we use to share code, manage versions, and track changes
to the code. It is a standard UNIX command (type “man cvs” at a UNIX

6

prompt to read all about it). The only command users typically ever need
is “cvs commit” which is used to publish changes you’ve made in your local
copy of a piece of code to the rest of the collaboration.

1.2.2 SRT

SRT stands for Software Release Tools. SRT is a Fermilab program used to
manage the building of code across several platforms. SRT also provides hooks
for linking your version of the MIPP software to a “master copy” (aka the
“base release”) so that you don’t have to have all the MIPP software checked
out to work on some small piece of it.

1.3 MIPP Offline Software Packages

To help give people who are new to the software get a feel for the lay of the
land, I’ve listed here the packages that currently exist in the MIPP software
and a short description of what they do.

1.3.1 Detector Geometry

Bfield Return values of the B field in JGG and Rosie magnets.

Geometry Answers questions like: How big is the TPC drift volume?
What material is a point in? Which detector is a point located in? How
far to the next boundary?

ConnectionMap Allows used to navigate through the various electronic
addresses given to the electronics channels in the detector.

1.3.2 Simulation

e907mc Main GEANT3 simulation program

dd geant and trim d0lib Used by e907mc

CalDigitizer Simulate response of calorimeters

7

ChamDigitizer Simulate response of drift chambers and multi-wire cham-
bers

CkovDigitizer Simulate response of threshold Čerenkov detector

RICHDigitizer Simulate response of RICH

TOFDigitizer Simulate response of time of flight counters

TPCDigitizer Simulate response of TPC

E907MCInterface Wrappers to handle FORTRAN/C++ interface

Geant3Interface Wrappers to handle C++ interface to GEANT3

MCTruth True MC tracks and vertices.

MCUtil Utility programs related to MC

1.3.3 Data Format and I/O

RawData Basic hit data from the detector

MCClasses Detector hit and track data from the e907mc simulation

EventDataModel Data format used by the offline

MippIo Raw data format used by the DAQ

Raw2Root Convert from raw DAQ format to offline format

IoModules Reading and writing events from files

8

1.3.4 Reconstruction and Analysis

JobControl Basic interface for plugging analysis and reconstruction code
into the analysis program. Provides the anamipp executable and JobModule
base class.

RecoBase Base classes for reconstruction. In particular, RBKTrack object
is defined there, which is the standard MIPP track object from which other
tracking objects should inherit.

Config Configuration package. Mostly used through JobControl.

DSTMaker and MIPPEventSummary create data summary files using
MIPPEventSummary format

RunInfo gives access to beam momentum, target material, gas pressures,
HV settings, and other information that is constant over the run.

1.3.5 Tracking

TrkRBase

TrkRBase package contains basic algorithms to reconstruct wire chamber
data. In particular TrkRBase sequence defined in TrkRBase.xml does the
following:

1. Converts BC, DC, and PWC digit information to Wire’s. Hot wires
are dropped, BC and DC TDC info is converted to drift time. You can
find a given chamber’s in Cal data bucket, folder names are “BC1”,
“DC1”, “PWC5”, etc.

2. Groups adjacent wires into WireClust’s and computes location of the
cluster in that chamber plane view. Clusters are also written into Cal

data bucket, same folder names.

3. For each chamber finds all possible crosses of clusters and writes them
out as WireCross’s into Cal bucket, same folder names.

9

4. Looks for straight-line TrackSeg’s in three groups: BC’s, DC1-3, and
DC4+PWC’s. Objects are written out into Reco data bucket, folders
“/TrkRBaseBC”, “/TrkRBaseC123”, “/TrkRBaseC456”.

5. Takes C123 and C456 track segments and if they match sufficiently
well, combines them into a TrkCand’s which is a candidate track with
a fit momentum

TPCReco

TPCReco takes all the TPC information, looks for tracks and does a helical
fit. Include TPCReco sequence from TPCReco.xml.

SPFit

SPFit is simple global tracking algorithm. It takes TPCRTrack’s, TrkCand’s,
TrackSeg’s and WireClust’s and combines all that information into global
SPTrk’s (which inherit from RBKTrack. Include SPTrkBuilder module with
its configuration from SPTrkBuilder.xml after TrkRBase and TPCReco se-
quences. You can then retrieve a vector of RBKTrack’s using the following
code:

std::vector<const RBKTrack*> trkList;

evt.Reco().Get(‘‘/sptrk/SPTrks’’, trkList);

It is in your best interest to retrieve SPTrk’s as RBKTrack’s, since once a
better tracking algorithm appears, your code will benefit from it when you
change the folder where tracks are being retrieved from.

VertexReco

1. VtxDAFit combines Tracks (from tracking) into vertices.

2. VtxConFit takes a list of vertices (from VtxDAFit) and re-fits all tracks
and the vertex position with the constraint that all tracks do originate
at the vertex.

1.3.6 Particle ID

RICHReco RICH ring reconstruction

10

1.3.7 Miscellaneous Packages

AEMStatsPlotter Generates plots of run statistics for presentation at
Fermilab All Experimenters’ Meetings

BatchProc Submit jobs to farms and grid

ColorScale Used by EventDisplay

EventDisplay Display single events in the detector. Useful during data
acquisition and offline.

MippDatabase and MippDatabaseBase Interface to PostGres DBs

MippXML XML interface

NumericalMethods Numerical methods

setup Information on tagged releases, setup scripts, and setupModule

SoftRelTools SRT builds itself

SRT MIPP MIPP extensions and customizations to SRT

Ziptrack Generates magnetic field maps for use by Bfield from Ziptrack
data

11

Chapter 2

The Event Data Structure

This chapter covers the basics about how to get from and write data to a
MIPP events.

2.1 The event structure

The EventDataModel package defines the MIPP event structure. The “pub-
lic” face to the event data users see is the class “EDMEventHandle”. The
event data is stored on several “branches” each representing a different stage
in the data processing. Let’s look at some sample code:

void AClass::AFunc(EDMEventHandle& evt)

{

//===

// ‘‘AFunc’’ is a method of ‘‘AClass’’ which is passed an event

// handle. The handle is passed by reference (Hence the ‘‘&’’)

//===

// The event header contains run/event numbers, date/time,

// trigger info. etc.

EDMEventHeader& head = evt.Header();

// The ‘‘MC’’ branch contains the input MC vector information

// In the case of real data it is empty

EDMDataBucket& mc = evt.MC();

// The ‘‘DetSim’’ branch contains data resulting from the

12

// detector simulation. In the case of real data, it is empty

EDMDataBucket& detsim = evt.DetSim();

// The ‘‘Raw’’ branch contains the raw (ie. uncalibrated)

// detector hit information. This should be essentially the

// data straight from the DAQ

EDMDataBucket& raw = evt.Raw();

// The ‘‘Cal’’ branch contains the calibrated detector hit data

EDMDataBucket& cal = evt.Cal();

// The ‘‘Reco’’ branch contains the results of reconstruction

// algorithms

EDMDataBucket& reco = evt.Reco();

// The MIPPSummary branch is the ‘‘official’’ ntuple-style

// summary of the reconstructed event

MIPPEventSummary& summary = evt.Summary();

// The following code shows how to extract a list of RICH digits

// from the event and print them all

std::vector<const RICHDigit*> richHits;

raw.Get(‘‘./rich’’,richHits);

std::vector<const RICHDigit*>::iterator itr(richHits.begin());

std::vector<const RICHDigit*>::iterator itrEnd(richHits.end());

for (; itr!=itrEnd; ++itr) {

std::cout << (*itr)->GetPM();

}

}

Let’s take a look at what we have here. There are three classes in play,
EDMEventHeader, EDMDataBucket, and MIPPEventSummary. The header and
summary are pretty straight forward classes and basically hold several im-
portant numbers associated with the event. The EDMDataBucket class (mc,
detsim, raw, cal, and reco) is a little more subtle as is it capable of de-
livering any type of object from the event. The basic syntax for extracting
data from the event is shown by the “Get” call. Data objects are held in the
event in directories (actually ROOT TFolders). So the “Get” call loads the
RICH pmt hits from the directory “./rich” into the (STL) vector richHits.
Notice the “const” in the vector declaration: users are not allowed to modify

13

data which is already associated with an event.

2.1.1 Where is the data? edm dump

The event data structure is very flexible, and like with any hierarchical direc-
tory structure it can be hard to keep track where any particular piece of data
may be with in an event. To help with this a utility edm dump is provided to
print as text the complete contents of an event in a file. Usage looks like:

edm dump myfile.root

edm dump takes a few options:

• -r [n]: Dump run number [n]. Default is 1st run in the file

• -e [n]: Dump event number [n]. Default is 1st event in file

So
edm dump myfile.root

would dump the first event in the file
edm dump -r 100 myfile.root

would dump the first event in run 100 in the file and
edm dump -r 100 -e 25 myfile.root

would dump event 25 in run 100.

2.1.2 Handling Errors: EDMException

Occasionally, a “Get” method will fail to load the requested data from an
event. This may be relatively benign, for example an attempt to extract MC
hits from a real data event. Or it might be fatal, for example a track fitter
which cannot find any tracks to fit. The event data model leaves the decision
about the severity of a failed “Get” to the user by using C++ exceptions.

Exceptions in C++ are flags raised by the software. If no action is taken,
they will cause the program to abort and dump core. For fatal errors, this is
exactly the desired behavior: the program does not silently continue and pro-
duce garbage, and it leaves a core file that the user can use to debug the the
problem. However, the user’s code has the option of checking for these flags,
handle them, and allow the program to continue. In the case of the Event-
DataModel package, the exceptions are defined by the class EDMException.

Again, some sample code will probably make all this more clear:

14

#include "EventDataModel/EDMException.h"

#include "EventDataModel/EDMEventHandle.h"

#include "EventDataModel/EDMDataBucket.h"

void MyClass::MyMethod(const EDMEventHandle& evt)

{

try {

// Get a list of DC digits from the "raw" branch in the file

// The "Get" operation may produce an exception if there are no

// DC digits in ./dc1

EDMDataBucket& raw = evt.Raw();

std::vector<const DCDigit*> dclist = raw.Get("./dc1", dclist)

// Do something useful with the digits...

}

catch (EDMException e) {

// If any EDMExceptions were raised, deal with them here. It

// probably means that there is no DCDigit data in ./dc1

// Failure to catch this exception would result in a core dump

std::cerr << "Failed to load DCDigits!" << std::endl;

return;

}

}

This show the basic syntax of the try...catch syntax in C++ . The
“try” executes a bunch of code, with the knowledge that an exception could
occur at any step along the way. If an exception is raised, execution skips to
the “catch” block. In this case, the catch is pretty lazy and just reports the
error before it ignores it. It could however try to do something more clever
to recover.

15

Chapter 3

Analysis and Reconstruction:
anamipp

Reconstruction and analysis of MIPP root data files is performed using a
program called “anamipp” which is created in the JobCModule package. This
chapter outlines how users can build and run their own jobs. There are several
examples of reconstruction programs one can follow in the repository. The
RICHReco, BCReco, TPCReco packages come to mind. The simplest place to
start, however, is with the Demo package which does no reconstruction, but
outlines the basics of getting a module hooked up.

3.1 Getting started with the Demo package

Offline jobs are defined as a series of modules (specifically classes inheriting
from the class JobCModule). Each module performs some piece of analysis
or reconstruction, storing its results into the event. To remain pluggable,
modules must be kept independent of each other, which is why they are
allowed to pass data to the event and not directly to each other.

I could explain how to plug into anamipp from either the bottom up
(modules to job) or from the top down (jobs down to modules). I’m going
to go from the top down.

This chapter is something of a tutorial so pull up a terminal window and
get ready to type-along...

16

3.1.1 Running anamipp

The first thing to do is to set up your SRT test release and then check the
Demo package out into your release:

% srt_setup -a

% addpkg -h Demo

Once that’s done, lets change into the Demo package and make a link to a
root file to play with:

% cd Demo

% ln -s /path/to/root/file/file.root infile.root

That will serve as our input file for the rest of this chapter.
Now, let’s just run the job:

% which anamipp

/usr/local/mipp/releases/development/bin/Linux2.4-GCC/anamipp

% anamipp -n 5 -x demojob.xml infile.root

JCXML: Linked libDemo.so

** Start job ’DemoJob’ Thu Dec 23 09:55:57 2004 **

Files in list:

>[0] infile.root (i=0)

DemoModule::DemoModule()

DemoModule::Update()

fInt = 907

fFloat = 0.907

fDouble = 0.907709

fString = E907

Set watch for DemoModuledefault

DemoModule::Reco() fInt=907, fFloat=0.907, fDouble=0.907709, fString=E907

DemoModule::Reco() fInt=907, fFloat=0.907, fDouble=0.907709, fString=E907

DemoModule::Reco() fInt=907, fFloat=0.907, fDouble=0.907709, fString=E907

DemoModule::Reco() fInt=907, fFloat=0.907, fDouble=0.907709, fString=E907

DemoModule::Reco() fInt=907, fFloat=0.907, fDouble=0.907709, fString=E907

** Thu Dec 23 09:55:57 2004 End job DemoJob **

+-DemoJob sequence (5/0/5 events 0u/0s seconds)

+DemoModule/default/ +reco/00005/00000/00005 0.00e+00/0.00e+00

+ana /00005/00000/00005 0.00e+00/0.00e+00

DemoModule::~DemoModule()

17

The “which” command just assures you that you’ve got the anamipp job
in your path. The next command is where the money is. This runs five
events (-n 5) through the job detailed in the demojob.xml file. Working
from the top down, the next step is to look at what goes into a job XML file.

3.1.2 Job description XML documents

Take a look at the demojob.xml file:

% less demojob.xml

This file does basically three things. First, it tells anamipp to link in the
Demo package. The anamipp contains all the boilerplate for file I/O and the
like, but it contains no reconstruction packages. The <link> tag pulls in the
reconstruction code.

The second thing that happens is that additional XML files are pulled
in. In this case the file DemoModule.xml is read to get the configuration
parameters to use in the DemoModule module. We’ll talk about configuration
documents a little later on.

The third thing is to actually build the job. A job is a series of “nodes”
which are associated with a named job module. Modules typically need some
tunable parameters to perform their work. These are stored in configurations
which share the module’s name, but may come in several different versions.
To select the version you want in your job, use the “config” parameter. All
modules must have a “default” version defined, so if you don’t know where
to start, start there.

Modules can perform either a piece of event reconstruction (“reco”) or
analysis (“ana”) on an event, the distinction being that reconstruction adds
information to an event (requiring read/write access) while analysis only
looks at data in the event (requiring only read access). This might be useful,
for example, in a tracking module. The reconstruction could be performed in
the “reco” stage and analysis of performance, say compared to Monte Carlo
truth, in the “ana” stage. While running on real data or in production one
could turn the “ana” stage off and save some CPU time.

Nodes are allowed to make a pass/fail decisions about events. Events
which are failed are not processed further. The user has some choices to
control how exactly the pass/fail decision is used which are controlled by the
“filter” setting. The choices are “on” in which case the pass/fail decisions
are enforced, “off” in which case the pass/fail decisions are ignored, and

18

“reverse” in which case the pass/fail decisions are enforced using “pass” to
mean “fail” and “fail” to mean “pass”. This would be useful, for example,
to output all the events that fail a certain module’s selection criteria.

3.1.3 Output from anamipp

The anamipp job prints some information for every run. Some of it is self-
explanatory. However, the following probably needs some explaining:

+-DemoJob sequence (5/0/5 events 0.02u/0s seconds)

DemoModule/default/ +reco/00005/00000/00005 2.00e-02/0.00e+00

+ana /00005/00000/00005 0.00e+00/0.00e+00

The first line says that the job “DemoJob” was run. Five events passed
the job, 0 events failed, and a total of 5 events were processed (5/0/5). The
job used 0.02 seconds of user time on the CPU and 0 seconds of system time
on the CPU.

The next lines report what happened in the individual nodes. In this
case, the reco and ana methods were called and passed 5 events, failed 0
events, and saw a total of 5 events. The reco method consumed 2e-2 seconds
of user CPU time and used 0 seconds of system CPU time.

That’s the top layer. Now let’s talk about the nitty-gritty of modules.

3.2 Job Modules

To plug your own code into anamipp you’ll need to write your own job mod-
ule. The DemoModule.h and DemoModule.cxx files implement a very simple
module which just prints its configuration for each event. These files are
pretty well commented and I’ve tried to put only the essential features in.
There are a few things you are required to do to get plugged in. They are
labeled in the files:

% grep Required DemoModule.h DemoModule.cxx

DemoModule.h:class DemoModule : public JobCModule // Required!

DemoModule.h: DemoModule(const char* version); // Required!

DemoModule.h: void Update(const CfgConfig& c); // Required!

DemoModule.cxx:MODULE_DECL(DemoModule); //Required!

DemoModule.cxx: JobCModule("DemoModule") // Required!

DemoModule.cxx: this->SetCfgVersion(version); // Required!

19

3.2.1 DemoModule.h

• class DemoModule : public JobCModule

Amodule is required to inherit from the class JobCModule which defines
the generic interface to job modules used by anamipp.

• DemoModule(const char* version)Modules are configurable objects
so they are required to implement a constructor which takes a version
tag labeling the configuration that should be used to set the module
up. Users should use this and only this constructor in their modules.

• void Update(const CfgConfig& c) Again, since modules are config-
urable items, they must implement the Update method (inherited in-
directly from the CfgObserver class) which is called when the configu-
ration used by the module changes requiring the module to update its
data.

3.2.2 DemoModule.cxx

• MODULE DECL(DemoModule);

This macro declares your module to anamipp so that it can be linked
into a job using your chosen name for it.

• JobCModule("DemoModule")

This appears in the constructor. You are required to call the JobC-
Module constructor using your chosen name for the module.

• this->SetCfgVersion(version)

This also appears in the constructor. You are required to inform the
base classes which configuration version you are using.

That’s about it for required code. You have the option of implementing
the Reco and Ana methods which will actually do work. These are given
access to the data using the EDMEventHandle class which is discussed in the
earlier chapter on the data model. For other examples:

% grep evt $SRT_PUBLIC_CONTEXT/RICHReco/RICHCircFit.cxx

% grep evt $SRT_PUBLIC_CONTEXT/RICHReco/RICHRadFit.cxx

20

The DemoModule::Reco method provides some sample code to show how
to store objects (TLine’s as an example) on the event.

Since we talked about how to store objects, let’s prove that the DemoModule
is in fact storing its TLine’s on the event:

% anamipp -n 1 -o outfile.root -x demojob.xml infile.root

JCXML: Linked libDemo.so

** Start job ’DemoJob’ Thu Dec 23 11:28:06 2004 **

Files in list:

>[0] infile.root (i=0)

DemoModule::DemoModule()

DemoModule::Update()

fInt = 907

fFloat = 0.907

fDouble = 0.907709

fString = E907

Set watch for DemoModuledefault

DemoModule::Reco()

fInt=907, fFloat=0.907, fDouble=0.907709, fString=E907

** Thu Dec 23 11:28:06 2004 End job DemoJob **

+-DemoJob sequence (1/0/1 events 0u/0s seconds)

DemoModule/default/ +reco/00001/00000/00001 0.00e+00/0.00e+00

+ana /00001/00000/00001 0.00e+00/0.00e+00

DemoModule::~DemoModule()

% edm_dump outfile.root

Dump of run = 10603 event = 0 file = outfile.root

evt.Header()

|==

evt.DetSim()

|-* hits

|==

evt.MC()

|-* kine

|==

evt.Raw()

|-* trig

|-* bckov

|-* dc1

|-* dc2

|-* DCDigits[98]

|-* dc3

21

|-* DCDigits[107]

|-* dc4

|-* DCDigits[7]

|-* bc1

|-* DCDigits[116]

|-* bc2

|-* DCDigits[4]

|-* bc3

|-* DCDigits[5]

|-* ecal

|-* ADCDigits[640]

|-* hcal

|-* ADCDigits[8]

|-* mwpc1

|-* mwpc2

|-* rich

|-* RICHDigits[28]

|-* t0

|-* tof

|-* tpc

|-* TPCStickInfos[79]

|-* TPCDigits[7114]

|-* ckov

|==

evt.Cal()

|==

evt.Reco()

|-* demo

|-* demomodule

|-* TLines[10]

|==

evt.User()

|==

evt.Summary()

|==

This shows the use of the very useful edm dump (edm dump --help for
more information)program which dumps the event structure stored in a file.
In this case, you’ll notice that 10 TLine’s have appeared in the Reco tree in
the /demo/demomodule folder.

22

3.2.3 Other methods

Job modules can also implement methods to receive notice at the beginning
and end of runs and sub-runs, at the beginning and end of files and to print
status reports or reset themselves. These are all outlined in:

% less $SRT_PUBLIC_CONTEXT/JobCModule.h

3.2.4 Configuration

As mentioned previously, modules are configurable objects. That is, they
typically use parameters to make decisions, fits, and otherwise do their job.
These configuration parameters should not be hard coded but rather stored
using the mechanism setup by the Config package. This will allow you, for
example, to tweak the module’s configuration parameters and rerun your fit
and look at the result from the event display – a fantastically useful tool for
tuning reconstruction programs.

You are required to supply a default configuration for your module. The
file “DemoModule.xml” does this for the DemoModule. Its pretty well com-
mented, so I’ll let it explain itself. This file works in conjunction with the
code in DemoModule::Update to get the parameters defined in the configu-
ration loaded into the module.

23

Chapter 4

Monte Carlo

MIPP Monte Carlo generation is a 2-step process. First one has to generate
a StdHep file1 using an external package such as FLUKA or DPMJET. Then
e907mc executable (compiled in ⁀e907mc package), can be run on the StdHep
file, tracking particles using GEANT 3.21. The output of e907mc is a ROOT
file which contains hits (local energy depositions) and particle stack. One can
specify that any number of detectors be digitized (mock raw data generated)
at the same time.

4.1 Event Generation

MIPP software provides for two ways of generating events: using FLUKA or
DPMJET.

4.1.1 FLUKA

TODO

4.1.2 DPMJET

TODO

1StdHep file must be binary, i.e. written through libFmcfio. Use

StdHep 5.05.05 or later, available from http://cepa.fnal.gov/psm/stdhep/ or

ftp://ftp.fnal.gov/products/stdhep/. Text StdHep files written through CLHEP

cannot be read by e907mc

24

4.2 e907mc

Monte Carlo is based on GEANT 3.21, but the program itself contains
no hard-coded geometry or configuration numbers. e907mc is configured
through a combination of RCP files and XML files, so virtually no geome-
try constants are compiled into the application. This section describes how
e907mc can be configured and run.

4.2.1 Execution details

Execution path is something along these lines

1. Command-line options are parsed;

2. e907mc.xml file is parsed;

3. Soft links are created to rcp(e) files, including target rcp link pointing
to the right target geometry file;

4. hanuman rcpe file is created from templated hanuman generate.rcpe

or hanuman interactive.rcpe depending on whether interactive or
batch mode were selected;

5. Bfield is configured based on the run number (default is field on);

6. ROOT geometry is loaded for selected target;

7. ROOT file is created using the run number (can be overridden from
command line);

8. Execution is passed to GEANT side through e907mc () subroutine
(defined in hanuman.F)

9. mci writeevt () function is called in guout.F (defined in dd geant

package). This function makes calls to E907MCInterface modules
which extract the particle stack, hit stacks for various detectors, and
perform digitization. All objects are written to ROOT event stream
(EventDataModel);

10. TheEnd() function defined in e907mc.cc is called at the very end.
ROOT file gets closed and soft links are cleaned up.

25

4.2.2 How to Run It

In the simplest case, one would start Monte Carlo generation with
e907mc -s <input.stdhep>

The number of events generated is determined by TRIG field in hanuman.rcp

file or the maximum number of events read from StdHep file. The following
options are available to fine tune running:

-n [--nevt] Followed by number of triggers to generate;

-s [--stdhep] Followed by StdHep file for input kinematics;

-r [--rzout] Followed by the name of the output GEANT zebra file;

-g [--histo] Followed by the name of PAW histogram file;

-o [--output] Followed by the name of ROOT output file. By default
run/subrun number is requested from the DB, and the output file is
named accordingly;

-p [--prompt] Run in interactive mode;

-t [--target] Followed by target type name: cryo (default), numi, or
wheel are recognized;

-R [--run] Followed by run number based on which Monte Carlo will be
setup.

4.2.3 Configuring Execution

One should assume that out of the box configuration of e907mc is reason-
able. However, for specialized studies, one will have to tweak at least some
parameters.

A number of RCP files exist in e907mc and beamline packages, which
setup geometry and hit definitions on the GEANT side. Some of these pa-
rameters (e.g. hit array definitions) can affect C++ side of the code in a
bad way, so be careful changing parameters. You should also know that
experiment geometry is setup for GEANT and C++ side through different
macros: RCP files control GEANT geometry, and ROOTmacros in Geometry
package control ROOT geometry (the latter are generated from the former).
Therefore, if you want to move a chamber, it will not be sufficient to move

26

it in RCP file. You will have to propagate the changes to the corresponding
Geometry macro.

Controlling Digitization As of this writing, by default e907mc only stores
GEANT hits and stores RICH digits (because that Fortran code depends on
GEANT common blocks. The advantage of this method lies in the fact that
GEANT tracking takes a significant amount of time, hence digitization is
much easier tuned with hits already written to disk. All detectors are dig-
itized in JobCModule’s with names like ChamDigitizer, etc. In order to
include a digitizer into e907mc, it must be listed in MCIDoDigi.xml file of
E907MCInterface package. By default, only RICH is listed. Other existing
digitizers are Cham, TPC.

4.2.4 Reconstructing Monte Carlo

Objects contained in data stream after digitization should resemble raw data
to the best extent possible, hence “usual” reconstruction algorithm should
work. Currently, the only exception is lack of simulation of the beamline,
so trigger information and beam chamber response is not available. If you
use default MC file (with RICH digits only), then digitization and recon-
struction can be done in the same job. A good example of job description is
mcRecoJob.xml, which includes

• DigiSequence to digitize chambers, and the TPC,

• TrkRBase sequence to reconstruct chamber data,

• TPCReco sequence to reconstruct TPC data,

• SPFit modules to connect TPC and chamber data into global tracking,

• FillEventSummary module to build DST.

27

Chapter 5

The MIPP Event Display: evd

The MIPP event display (executable “evd”) is a very powerful tool for visu-
alizing events in the MIPP spectrometer. In the event display, ne can draw
both the raw data and reconstructed hits, tracks and vertices, allowing for
data quality monitoring as well as a means to easily (visually) verify the
results of any event reconstruction algorithm.

5.1 Starting the Event Display

The name of the executable for the MIPP event display is “evd”. The com-
mand line arguments for evd are the same as anamipp’s. The event display is
configured via XML, the arguments of which are in evd. xml. If one wishes to
use a different startup configuration for the event display, edit the evd. xml
file and start evd with the command:

> evd -x evd.xml [input file]

5.2 Event Display Windows

The event display offers a variety of windows to display MC hits, raw data
(both MC and real) and reconstructed hits, tracks and vertices. Windows
may be opened up by selecting them from the “Window” menu. Often one
wishes to see only data in a single detector, so there are display windows for
nearly every detector in the MIPP experiment. The display in some windows
are configurable via XML parameters. To change the display settings while

28

running the event display, select the desired window from the “Edit” menu.
Below, we describe a few windows that have proven to be most useful to the
general user.

5.2.1 Full Display

The “Full Display” window displays the front, side and top view of the full
MIPP spectrometer in wire frames. In addition there is a 3D view of the
spectrometer that can be rotated and zoomed. In this display window, all
raw digits and reconstructed tracks in the MIPP event tree are drawn.

5.2.2 Tracking Display

The “Tracking Display” is another display for viewing hits in the full MIPP
spectrometer. Here only reconstructed hits, tracks and vertices are shown.
Because of its cleaner presentation of the TPC and downstream wire chamber
volumes, this display will be used in handscan studies of reconstructed events.
It is relatively easy for the user to determine whether or not a reconstructed
TPC track is matched with the appropriate downstream hits, or vice-versa.

5.2.3 TPC Display

The “TPC Display” shows MC tracks, raw TPC digits, reconstructed TPC
hits, and reconstructed tracks and vertices in the TPC volume only. Because
the target is located so close to the TPC volume, this is a good display to use
to verify the vertex finding and fitting algorithms, as well as the TPC-specific
reconstruction algorithm. By default, the display of MC tracks and raw hits
is disabled; one can display these by changing the XML parameters of the
TPC display options.

5.2.4 MC Information

This window contains a list of all MC tracks in the event, with a fairly com-
plete description of each track (momentum, particle type, mother particle,
etc.). One can select which tracks are drawn by clicking on the checkbox
next to each particle. If unchecked, the track will not be drawn in any of the
above displays. If checked, the track will only be drawn in some displays if
the corresponding window’s display options allow MC hits to be drawn.

29

5.3 Running a Job in the Event Display

One of the most powerful uses of the MIPP event display is the ability to run
and configure a reconstruction or analysis job in real time, event-by-event,
in the event display. To do so, select “Open XML” in the “Job” menu,
and select the desired job description XML file from the file dialog. If the
event display window is designed to do so, the reconstructed objects (eg, hits,
tracks, vertices) will be drawn in the window.

To change the configuration of any of the modules used in the job, select
the desired module from the “Edit Config” option in the “Job” menu. A
dialog will appear with all of the XML parameters of that module; after
making the desired changes to the values of the parameters, click on “Apply”
and the job sequence will run again and the event will be redrawn.

30

Chapter 6

Data Analysis with the DST

A condensed version of the event reconstruction is available via the Data
Summary Table (DST). The DST is essentially a Root TTree; currently,
two branches of the tree are filled, one using results obtained from the simple
TPC reconstruction in the TPCRecoJP module (helix fits to tracks), the other
using results obtained from the global track fits in the SPFit module. One
should not, however, that detector PID information is only available in the
SPFit branch. Therefore, most analyses should use the “SPReco” branch of
the DST TTree.

6.1 Format of the DST - Round 2

A schematic of the format of the DST used in Round 2 (completed early 2006)
of the reconstruction is shown in Fig. 6.1. Each event in the DST is described
by the MIPPEventSummary class. This class holds general information such
as run and event number, raw trigger information, some raw digit informa-
tion, and lists of pointers to MIPPTrackSummary’s and MIPPVertexSummary’s.
These objects contain information for each reconstructed track or vertex as
described in the subsections below.

6.1.1 The MIPPEventSummary Class

Some general information about the event in question may be accessed through
the public members of the MIPPEventSummary class. The list and description
of these variables are listed in Table 6.1.

31

Figure 6.1: Schematic of the DST format used in Round 2.

32

6.1.2 The MIPPTrackSummary Class

A summary of a reconstructed track in the event is held in the MIPPTrackSummary
class. This class is currently used to describe both incoming beam tracks as
well as tracks emanating from or downstream of the target. The momentum
of the incoming beam track is, at this point, simply taken from the database
value of the average momentum for the run. The particle ID of the beam
track, however, comes from the results of the BCkovReco module. The parti-
cle ID detector information for downstream tracks is gathered from TOFReco,
CkovReco, RICHReco, and TPCRdEdx.

The list and description of the variables in this class are listed in Tables
6.2 and 6.3.

6.1.3 The MIPPVertexSummary Class

A summary of a reconstructed vertex in the event is held in the MIPPVertexSummary
class. By convention, the first MIPPVertexSummary object in the array held
by the mother MIPPEventSummary object is the primary vertex. This class is
fairly straightforward, and it contains the index of the first track associated
with it and the number of tracks associated with it, so that one can easily
loop over all tracks associated to a given vertex.

The list and description of the variables in this class are listed in Table
6.4.

6.2 Format of the DST - Round 3

A schematic of the format of the DST for round 3 (to be completed mid
2006) of the reconstruction is shown in Fig. 6.2. Here, the information from
a particle ID for a matched track is stored in a separate object (class). As
before, general event information is stored in the MIPPEventSummary class,
generic track information is stored in the MIPPTrackSummary class and vertex
information is stored in the MIPPVertexSummary class.

Also new to this version of the DST is a separate TTree holding spill in-
formation. Basically this TTree holds the information of the scalar readouts
after each spill in the MIPP experiment necessary for cross-section mea-
surements. The information is held in the MIPPSpillSummary class describe
below.

Class descriptions are listed in Tables 6.5-6.13.

33

Figure 6.2: Schematic of the DST format to be used in Round 3.

34

6.3 Getting Started With the DST

A simple script (“mkDSTmacro”) is installed in the MIPP offline software
release that dumps a template macro to the screen. For completeness, here
is the macro:

#include <iostream.h>

void DSTTemplate(char fname[256], int numevents=0)

{

if (fname == "") {

std::cout << "Usage: DSTTemplate.C([DST File Name],[nevents])"

<< std::endl;

return;

};

char mytxt[256];

char outfname[256];

gROOT->Reset();

gStyle->SetOptTitle(1);

gSystem->Load("libMIPPEventSummary");

MIPPEventSummary* evt = new MIPPEventSummary();

MIPPVertexSummary* vtx;

MIPPTrackSummary* trk;

TFile* DSTFile = new TFile(fname);

TTree* DSTTree = (TTree*)DSTFile->Get("FillEventSummary/fNtTree");

//***** if you want results from SPReco, comment out the

//***** next line and uncomment the line below it

TBranch* DSTBr = DSTTree->GetBranch("fTPCReco");

// TBranch* DSTBr = DSTTree->GetBranch("fSPReco");

DSTBr->SetAddress(&evt);

35

DSTTree->SetBranchAddress("fDST",&evt);

int nevt = (int)DSTTree->GetEntries();

if (numevents <= 0 || numevents > nevt) numevents = nevt;

for (int ievt = 0; ievt<numevents; ++ievt) {

evt->Clear();

DSTTree->GetEntry(ievt);

if (ievt == 0) std::cout << "Processing run " << evt->run << std::endl;

int ntrk = evt->NTrk();

int nvtx = evt->NVtx();

std::cout << ntrk << " tracks in event " << evt->evtnum << std::endl;

std::cout << nvtx << " vertices in event " << evt->evtnum << std::endl;

// here’s how to loop through all vertices in an event:

for (int ivtx=0; ivtx < nvtx; ++ivtx) {

vtx = evt->GetVtx(ivtx);

std::cout << "\t Vertex " << ivtx << " at (" << vtx->x[0] << ","

<< vtx->x[1] << "," << vtx->x[2] << ") has " << vtx->ntrk

<< " tracks." << std::endl;

// now do something with the vertex...

}

// here’s how to loop through all tracks in an event:

for (int itrk=0; itrk < ntrk; ++itrk) {

trk = evt->GetTrk(itrk);

std::cout << "\t Track " << itrk << " belongs to vertex "

<< trk->vtxindex << std::endl;

// now do something with the track...

}

// here’s how to loop through all tracks belonging to

// each vertex in an event:

36

for (int ivtx=0; ivtx < nvtx; ++ivtx) {

vtx = evt->GetVtx(ivtx);

int vntrk = vtx->ntrk;

int itrk = vtx->trkindex;

for (int j=0; j<vntrk; ++j) {

trk = evt->GetTrk(itrk+j);

std::cout << "\t\t Track " << (itrk+j) << " has momentum = "

<< trk->ptot << " GeV" << std::endl;

}

}

}

}

//**

To create a macro of your own from this script, simple execute:

> mkDSTmacro > myDSTmacro.C

and edit the macro to fit your needs. The macro can then be used in an
interactive Root session. If one desires faster processing, it should be easy
modify the script to be an executable, although at the time of this writing,
this has yet to be done.

37

Summary of MIPPEventSummary Class - Round 2

Var. name Var. type Default Description
value

run I 0 Run number
evtnum I -1 Event number
rawtrig I -1 Raw trigger word
pstrig I -1 Prescale trigger word
sciadc I 0 Scint. Trigger ADC value
scitdc I 0 Scint. Trigger TDC value
nwbc I 0 Num. hit BC wires
npbc[3] I 0 Num. hit BC planes, for

each BC
nwdc1 I 0 Num. hit DC1 wires
npdc1 I 0 Num. hit dc1 planes
ntofbars I 0 Num. hit tof bars
tofbar[16] I -1 Array of hit tof bar numbers

nrr I 0 Num. RICH rings (rr)
nckovm I 0 Num. DCkov mirrors

above threshold
t0 F -1.e5 start time (taken at T01)

rrpos[2][16] F -1.e5 center (x,y) position
of each RICH ring

rrrad[16] F -1. radius of each RICH ring
avgb[2] F 0. avg. B field (0 = JGG, 1 = Rosie)
tgta F 0. target atomic number

GetTrk(i) T* 0 method for getting ptr to track i

GetBTrk(i) T* 0 method for getting ptr to beam track i

GetVtx(i) V* 0 method for getting ptr to vertex i

Table 6.1: Description of the MIPPEventSummary class. Var. type I ==
integer, F == float, T = MIPPTrackSummary, V = MIPPVertexSummary.

38

Summary of MIPPTrackSummary Class (Track Information) - Round 2

Var. name Var. type Default Description
value

vtxindex I -1 index of associated vertex, outgoing
invtxindex I -1 index of associated vertex, incoming

pid P 0 paricle id
pid def D 0 PID detector id
nwwc I 0 Num. of WC wires in track
npwc I 0 Num. of WC planes in track
q I 0 charge of particle

x[3] F -1.e5 position vector at tgt
dx[3] F -1.e5 pos. uncertainty at tgt
p[3] F -1.e5 momentum vector at tgt
dp[3] F -1.e5 mom. uncertainty at tgt
ptot F -1.e5 total momentum at tgt
pt F -1.e5 transverse mom. at tgt

dpid[4][5] F -1.e5 Log-likelihood PID matrix
row=PID::Detector t, col=PID::PID t

gof F 0. goodness-of-fit

Table 6.2: Description of the MIPPEventSummary class. Var. type I = integer,
F = float, P = RBPID::PID t, D = RBPID::Detector t.

39

Summary of MIPPTrackSummary Class (PID Detector Information) - Round 2

Var. name Var. type Default Description
value

TPC
ntpchits I 0 Num. of TPC hits in track
ndedx I 0 Num. of TPC hits used in 〈 dE/dx 〉
tpcdedx F 0. 〈 dE/dx 〉

ToF : (0=ToF Bar, 1=ToF Calib.Bar), (top=0, bottom=1)
tofbar[2] I 0 associated ToF bar number
toftdc[2][2] I 0 ToF bar TDC
tofadc[2][2] I 0 ToF bar ADC
tofx(y)[2] F -1.e5 projected x(y)-pos. at ToF
tofds[2] F 0. pathlength from target

center to ToF
DCkov : 3x3 mirror grid around central mirror

ckovm I -1 DCkov central mirror id
ckovntdc[3][3] I 0 Num. TDCs in mirrors

ckovtdc[3][3][10] F 0 TDC values of 3x3 mirror grid
ckovadc[3][3] F 0 ADC values of 3x3 mirror grid
ckovx(y) F 0. x(y)-pos. at upstream end of DCkov

ckovxp(yp) F 0. dx(y)/dz at upstream end of DCkov
ckovds F 0. path length of track inside DCkov

RICH
rmirr I -1 projected RICH mirror
rrad F -1.e5 associated ring radius
drrad F -1.e5 uncertainty of ring radius

richx(y) F -1.e5 ring center, (x,y)
rtrkx(y) F -1.e5 position at RICH

Table 6.3: Description of the MIPPEventSummary class. Var. type I = integer,
F == float

40

Summary of MIPPVertexSummary Class - Round 2

Var. name Var. type Default Description
value

ntrk I 0 Num. tracks in vertex
trkindex I -1 index of 1st track in vertex
intrkindex I -1 index of incoming track
vtxstatus I 0 vertex fit status
vtxtype I 0 vertex type (1==Primary, 2==Secondary, etc.)
x[3] F -1.e5 vertex position vector
dx[3] F -1.e5 vertex pos. uncertainties
ptot F 1.e5 summed momentum of charged tracks
pt F 1.e5 summed transverse mom. of charged tracks
pz F 1.e5 vertex total p z
gof F 0. goodness-of-fit

Table 6.4: Description of the MIPPEventSummary class. Var. type I = integer,
F == float.

Summary of MIPPSpillSummary Class - Round 3

Var. name Var. type Default Description
value

run I 0 Run number
spill I 0 Spill number
nevt I 0 Number of events in spill

rawTrigInput[40] I 0 raw trigger scalar count
gatedTrigBit[20] I 0 gated trigger bit scalar count
rawTrigBit[20] I 0 raw trigger bit scalar count
psTrigBit[20] I 0 prescaled trigger bit scalar count

psAndGatedTrigBit[20] I 0 prescaled and gated trigger bit
scalar count

Table 6.5: Description of the MIPPSpillSummary class used in Round 3. Var.
type I == integer.

41

Summary of MIPPEventSummary Class - Round 3

Var. name Var. type Default Description
value

run I 0 Run number
spill I -1 Spill number

evtnum I -1 Event number
rawtrig I -1 Raw trigger word
pstrig I -1 Prescale trigger word

bckov1adc[2] I -1 Beam Ckov 1 ADCs
bckov2adc[2] I -1 Beam Ckov 2 ADCs
bckov1tdc[2] I -1 Beam Ckov 1 TDCs
bckov2tdc[2] I -1 Beam Ckov 2 TDCs

sciadc I 0 Scint. Trigger ADCs
scitdc I 0 Scint. Trigger TDCs
nwbc I 0 Num. hit BC wires
npbc[3] I 0 Num. hit BC planes, for each BC
nwdc1 I 0 Num. hit DC1 wires
npdc1 I 0 Num. hit dc1 planes
ntofhits I 0 Num. tof hits
ntofbars I 0 Num. hit tof bars
nckovm I 0 Num. DCkov mirrors above threshold

t0 F -1.e5 start time (taken at T01)
avgb[2] F 0. avg. B field (0 = JGG, 1 = Rosie)
tgta F 0. target atomic number

GetTrk(i) T* 0 method for getting ptr to track i

GetBTrk(i) B* 0 method for getting ptr to beam track i

GetVtx(i) V* 0 method for getting ptr to vertex i

GetTPC(i) TPC* 0 method for getting ptr to TPC trk info i

GetToF(i) ToF* 0 method for getting ptr to ToF trk info i

GetDCkov(i) DCkov* 0 method for getting ptr to DCkov trk info i

GetRICH(i) RICH* 0 method for getting ptr to RICH trk info i

GetCalo(i) Calo* 0 method for getting ptr to Calo trk info i

Table 6.6: Description of the MIPPEventSummary class. Var. type I == in-
teger, F == float, T = MIPPTrackSummary, B = MIPPBeamTrkSummary,
V = MIPPVertexSummary, TPC = MIPPTPCSummary, etc.

42

Summary of MIPPTrackSummary Class - Round 3

Var. name Var. type Default Description
value

vtxindex I -1 index of associated vertex, outgoing
invtxindex I -1 index of associated vertex, incoming

pid P 0 paricle id
pid def D 0 PID detector id

q I 0 charge of particle
nwchits[6] I 0 number of wire hits in track

itpc I -1 index of assoc. MIPPTPCSummary
itof I -1 index of assoc. MIPPToFSummary

idckov I -1 index of assoc. MIPPDCkovSummary
irich I -1 index of assoc. MIPPRICHSummary
icalo I -1 index of assoc. MIPPCaloSummary
x[3] F -1.e5 position vector at tgt/vtx
dx[3] F -1.e5 pos. uncertainty at tgt/vtx
p[3] F -1.e5 momentum vector at tgt/vtx
dp[3] F -1.e5 mom. uncertainty at tgt/vtx
ptot F -1.e5 total momentum at tgt/vtx
pt F -1.e5 transverse mom. at tgt/vtx
gof F 0. goodness-of-fit

utpcx[3] F -1.e5 pos. vector at upstream face of TPC
utpcp[3] F -1.e5 mom. vector at upstream face of TPC
dtpcx[3] F -1.e5 pos. vector at downstream face of TPC
dtpcp[3] F -1.e5 mom. vector at downstream face of TPC
urosyx[3] F -1.e5 pos. vector at upstream face of ROSY
urosyp[3] F -1.e5 mom. vector at upstream face of ROSY
drosyx[3] F -1.e5 pos. vector at downstream face of ROSY
drosyp[3] F -1.e5 mom. vector at downstream face of ROSY
wcx[6][3] F -1.e5 pos. vector at downstream face of WC 1-6
wcp[6][3] F -1.e5 mom. vector at downstream face of WC 1-6

Table 6.7: Description of the MIPPEventSummary class. Var. type I = integer,
F = float, P = RBPID::PID t, D = RBPID::Detector t.

43

Summary of MIPPVertexSummary Class - Round 3

Var. name Var. type Default Description
value

ntrk I 0 Num. tracks in vertex
trkindex I -1 index of 1st track in vertex
intrkindex I -1 index of incoming track
vtxstatus I 0 vertex fit status
vtxtype I 0 vertex type (1==Primary, 2==Secondary, etc.)
x[3] F -1.e5 vertex position vector
dx[3] F -1.e5 vertex pos. uncertainties
p[3] F 0. vector sum of track momenta
dp[3] F 0. uncertainties of vector sum of track momenta
ptot F 1.e5 summed momentum of charged tracks
pt F 1.e5 summed transverse mom. of charged tracks
gof F 0. goodness-of-fit

Table 6.8: Description of the MIPPEventSummary class. Var. type I = integer,
F = float.

Summary of MIPPTPCSummary Class - Round 3

Var. name Var. type Default Description
value

itrk I 0 Track index
nhits I 0 Num. of TPC hits in track
ndedx I 0 Num. of TPC hits used in 〈dE/dx〉
dedx F 0 〈dE/dx〉 of track
LL[5] F 0 Log-likelihood PID for different particle species

Table 6.9: Description of the MIPPTPCSummary class. Var. type I = integer,
F = float.

44

Summary of MIPPToFSummary Class - Round 3

Var. name Var. type Default Description
value

itrk I 0 Track index
bar I 0 associated ToF bar
cbar I 0 associated ToF calib. bar
tadc I 0 ToF bar top ADC
ttdc I 0 ToF bar top TDC
badc I 0 ToF bar bottom ADC
btdc I 0 ToF bar bottom TDC
ceadc I 0 ToF calib. bar east ADC
cetdc I 0 ToF calib. bar east TDC
cwadc I 0 ToF calib. bar west ADC
cwtdc I 0 ToF calib. bar west TDC
x F -1.e5 projected x-pos. of track at ToF bar
y F -1.e5 projected y-pos. of track at ToF bar
cx F -1.e5 projected x-pos. of track at ToF calib. bar
cy F -1.e5 projected y-pos. of track at ToF calib. bar
ds F -1.e5 track path length from its origin to ToF bar
cds F -1.e5 track path length from its origin to ToF calib. bar
beta F -1.e5 ToF calculated v/c for this track
LL[5] F 0 Log-likelihood PID for different particle species

Table 6.10: Description of the MIPPToFSummary class. Var. type I = integer,
F = float.

45

Summary of MIPPDCkovSummary Class - Round 3

Var. name Var. type Default Description
value

itrk I 0 Track index
mirr I 0 associated central DCkov mirror

ntdc[3][3] I 0 Num. of TDCs of 3x3 grid about central mirror
tdc[3][3][10] I 0 Up to 10 TDCs of 3x3 grid about central mirror
adc[3][3] I 0 ADCs of 3x3 grid about central mirror

x F -1.e5 projected x-pos. of track at up. end of DCkov
y F -1.e5 projected y-pos. of track at up. end of DCkov
xp F -1.e5 projected dx/dz of track at up. end of DCkov
yp F -1.e5 projected dy/dz of track at up. end of DCkov
ds F -1.e5 path length of track inside DCkov

LL[5] F 0 Log-likelihood PID for different particle species

Table 6.11: Description of the MIPPDCkovSummary class. Var. type I =
integer, F = float.

Summary of MIPPRICHSummary Class - Round 3

Var. name Var. type Default Description
value

itrk I 0 Track index
mirr I 0 projected RICH mirror
nhits I 0 Num. of PMT hits attributed to this track
rad F -1.e5 RICH ring radius
drad F -1.e5 RICH ring radius uncertainty
xr F -1.e5 x-center. of RICH ring
yr F -1.e5 y-center. of RICH ring
xt F -1.e5 projected x-pos of track at face of PMT box
yt F -1.e5 projected y-pos of track at face of PMT box

LL[5] F 0 Log-likelihood PID for different particle species

Table 6.12: Description of the MIPPRICHSummary class. Var. type I = integer,
F = float.

46

Summary of MIPPCaloSummary Class - Round 3

Var. name Var. type Default Description
value

itrk I 0 Track index
ext F -1.e5 projected x-pos of track at ECal
eyt F -1.e5 projected y-pos of track at ECal
exc F -1.e5 projected x-pos of track at ECal
eyc F -1.e5 projected y-pos of ECal cluster
eecal F -1.e5 reconstructed energy deposited in ECal
hxt F -1.e5 projected x-pos of track at HCal
hyt F -1.e5 projected y-pos of track at HCal
hxc F -1.e5 projected x-pos of track at HCal
hyc F -1.e5 projected y-pos of HCal cluster
ehcal F -1.e5 reconstructed energy deposited in HCal

Table 6.13: Description of the MIPPCaloSummary class. Var. type I = integer,
F = float.

47

Chapter 7

Retrieving MIPP data from
Enstore

MIPP data is stored on robot tapes in FCC. This chapter details how data
can be extracted so that it can be worked on.

7.1 Data storage system documentation

The other sections in this chapter detail MIPP specific ways to get data. If
you are interested in getting more documentation about data storage system,
the following web sites will be useful.

• http://computing.fnal.gov/docs/products/enstore/

• http://www.dcache.org/

• http://hppc.fnal.gov/enstore/

7.2 Organization of MIPP Enstore area

MIPP home area in Enstore contains two actively used directories: mippData
where raw data files are stored and mippPostgres where weekly database
dumps are stored for backup.

mippData directory contains a 5-digit subdirectories, each containing 1000
runs beginning with the five digits. For example, run 13432 will reside in
mippData/00013.

48

mippPostgres directory contains 8-digit subdirectories for the date of
database dump of the form YYYYMMDD. All databases on the database server
(mippsrv01) are stored as separate files. Offsite clusters may wish to mirror
databases locally to speed up access to database information. See Postgres
documentation on how to do this.

7.3 On e907ana computers

If you are looking for a recent run (a few days old), then the file is likely to
be in either /data/0 or /data/1. If you intend to keep the file on the cluster
for a while, then copy it to one of the /disks/X directories. Please do not
copy files to /home partition!

If the run you are looking for is not in /data/0 or /data/1, then you will
have to extract the file from Enstore. Before you proceed, make sure that
/usr/local/bin is in your PATH environment variable.

You have two ways to extract data:

1. ENSgetRun.pl --run <run> --dir <directory>

Example: ENSgetRun.pl --run 13200 --dir .

2. encp /pnfs/e907/mippData/NNNNN/<data file> <directory>

Example: encp /pnfs/e907/mippData/00013/mipp00013200.*.raw

.

The first option is a Perl script that retrieves all sub runs for a given
run. The second option allows you to use wildcards, etc. For all intents
and purposes, encp works just like cp when operated on PNFS file system.
Again, please do not copy files to /home partition!

7.4 Through kerberized FTP

If you would rather get files directly, bypassing e907ana cluster (suppose you
want to do processing off-site!), then kerberized FTP is presently the only
way to get data files.

MIPP users’ kerberos principals (user names) should be added to Enstore
configuration to allow access to our data. If your principal is not added, file
a helpdesk ticket. Contact David Lange or Andre Lebedev if you continue
to have trouble.

49

Once you obtain a kerberos ticket (kinit -f <user name>), you should
be able to get read only access by executing
> ftp fndca.fnal.gov 24127

Connected to stkendca3a.fnal.gov.

220 Kerberos FTP Door ready

334 ADAT must follow

GSSAPI accepted as authentication type

GSSAPI authentication succeeded

Name (fndca.fnal.gov:alebedev): alebedev

200 User alebedev logged in

Remote system type is UNIX.

Using binary mode to transfer files.

ftp>

You should use your kerberos principal (user name) in order to get access.
Once you are in, the following command will get subrun 0 of run 13200:

get mippData/00013/mipp00013200.0000.raw

Fndca FTP server accepts Java style wildcards, so to get all sub runs of
run 13200 particular run, execute

mget mipp00013200.000..raw

7.4.1 Hints

1. Log in without prompt
If you would like for ftp to log you on automatically, add this line to
/.netrc file (create the file if you don’t have one):
machine fndca.fnal.gov login your-kerberos-principal

2. Turn of confirmation for downloading
FTP prompt command toggles the switch for interactive promting dur-
ing multiple file transfers.

3. About Java wildcards
The website below should be helpful if you want to do more fancy tricks
than using a dot as a wildcard symbol.

http://java.sun.com/j2se/1.4.2/docs/api/java/util/

regex/Pattern.html

50

Chapter 8

MippDatabase: SQL database
interface

8.1 Introduction

The MippDatabaseBase and MippDatabase classes provide an interface from
MIPP code to an SQL database. The database implemented is PostGreSQL.
This document explains how PostGreSQL is configured on MIPP computers,
how to load the database with tables defined in XML, and how to retrieve
this information from them in MIPP executables.

This section assumes familiarity with other software used by MIPP and
described in this document, specifically SRT and root.

8.2 To-Do list

• Everything seems too slow (but it seems to be the PostGres software
itself..)

• Make overriding the db with XML easier

8.3 Underlying SQL software

We have selected the PostGreSQL version of the SQL relational database
standard. PostGreSQL is open source (as opposed to Oracle) and implements
a larger fraction of the standard than mySQL.

51

The actual details of PostGreSQL are hidden from the user interface (and
even much of the code described here). This will allow MIPP to switch to a
different implementation of rational databases with minimal effort.

For our offline code, we are currently using the C interface that comes in
the standard PostGreSQL distribution.

8.4 Setup for PostGreSQL

1. Download a recent PostGreSQL tar file from the postgres web site.
Start at http://www.postgresql.org/mirrors-ftp.html. We are using
version 7.4.5, however newer releases should also be fine.

2. tar xvz lange6/postgresql-7.4.5.tar.gz

3. cd postgresql-7.4.5

4. See the INSTALL and configure files for more information. In or-
der to make use of python scripts for DB access, you should add
--with-python option when running configure script.

5. ./configure

6. gmake

7. (as root) gmake install

8. Now you sure have PostGres installed in /usr/local/pgsql. The ’lib’
subdirectory should contain libraries including libpq.

If you want to use your local installation to mirror the MIPP db or otherwise
use your PostGreSQL to keep data locally you will in addition need to do

1. (as root) mkdir /usr/local/pgsql/data

2. (as root) chown lange /usr/local/pgsql/data

3. (Not as root) Initialize the data directory for your database

/usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data

52

4. The ’postmaster’ process needs to be running when you want to access
the database:

/usr/local/pgsql/bin/postmaster -D

/usr/local/pgsql/data >& logfile &

5. To create a database, do createdb <db-name>. This only needs to be
done once. For MIPP the following databases exist:

• cmap: Connection maps

• calib: Calibration constants

• runs: Online database, contains run configuration and status in-
formation

• slowmon: All slow controls monitoring information

• rich: RICH electronics connection map, board status

In addition, to compile and run MIPP code that relies on the database,
you will need to define the environment variable PGSQL DIR to be the location
where you installed PostGreSQL (by default this is /usr/local/pgsql) and
you will need to add PGSQL DIR/lib to your LD LIBRARY PATH. This should
be done for you in the standard setup scripts on e907daq.

See also HTML documentation under the pgsql/doc/html directory for
available database management commands.

8.4.1 PostGreSQL on e907anaX/e907daq

The PostGreSQL database is hosted on mippsrv01 and mippsrv02. mipp-
srv02 is a backup to mippsrv01. Use mippsrv01 to write new data to the db.
The database host can be specified in the environment variable PGHOST.

We have two user accounts for accessing the database: mippdbread and
mippdbwrite. Passwords have recently been sent to the mipp-priv mailing
list. If not ask me (lange6@llnl.gov) or others what they are. To set the
database user, simply do (if you are a tcsh user..)

setenv PGUSER mippdbread

53

As the names indicate, mippdbread is for processes that do not need to write
information to the database, and mippdbwrite is for those that do. The
mippdbread user can only query the database, and should the the default
user for offline applications.

To most easily set up your account to access the MIPP database, create
a .pgpass file that looks like

::*:mippdbwrite:readerpassword

::*:mippdbread:writerpassword

Be sure that the permissions for this file are 0600; otherwise it will be
ignored by PostGreSQL.

8.4.2 Remote access

The database on mippsrv0n can currently be accessed remotely via TCP/IP.
Your connection needs to be SSL encrypted. The following environment
variable is also needed:
PGHOST = mippsrv01.fnal.gov

Offline code looks for PGHOST variable to be set. If it is not set explicitly,
than the code defaults to mippsrv01.fnal.gov. Therefore, if you wish to
use a mirror of the database, set the environment variable.

8.4.3 Database backup

The database is backed up regularly using a script in the Enstore package
(mipp/online/Enstore in cvs). Archived database snapshots are found in
Enstore at

/pnfs/e907/mippPostgres/<date>

and can be restored using:

pg_restore <file to restore from>

Note that the files stored in Enstore are gzipped, so they would need to be
unzipped before the pg restore command could be used. See PostGreSQL
documentation for details.

54

8.5 MIPP specific code

The code for the MIPP database implementation currently lives in two pack-
ages: MippDatabaseBase and MippDatabase. These packages depend on the
Conventions package and the MippXML package. The MippDatabaseBase
package contains a generic (but simple in terms of the feature set imple-
mented) SQL interface and the PostGreSQL implementation for that inter-
face. This is designed to make it possible for MIPP to use a different SQL
database in the future, with a minimal change in code. The MippDatabase
package implements the specific tables needed for MIPP use as well as the
XML interface.

8.6 Types of predefined tables

The MIPP database software predefines two types of tables that we believe
are needed for general purpose use in MIPP software. These are a table
based on run number and sub-run number ranges and a table based on time
stamp. Tables based on these basic types are configurable either in code

• MippDatabase/MdbTableRunSubRun

• MippDatabase/MdbTableOneRun

• MippDatabase/MdbTableTimestamp

or via XML

• MippDatabase/MdbTableRunSubRunXML

• MippDatabase/MdbTableOneRunXML

• MippDatabase/MdbTableTimestampXML

We expect that the most common usage will be by XML, so we document
that interface below.

Both tables are based on a set of user defined columns. These columns
are augmented by columns which define the validity range, either by run
number or by time stamp, as well as defining the time at which the database
entry was loaded into the database.

55

The “RunSubRun” table adds columns for the min and max run num-
ber (“runNumMin” and “runNumMax”), min and max sub-run number
(“subRunMin” and “subRunMax”), and load time (“loadTimeGMT”). The
“Timestamp” table adds columns for the min and max validity time (“tsMin”
and “tsMax”) and the load time (“loadTimeGMT”). The “OneRun” ta-
ble adds columns for the run number (“runNum”) and load time (“load-
TimeGMT”).

There is one caveat for the Timestamp table. Intervals should be defined
as not to overlap. To avoid actually doing the database query each time, the
result of each query is cached and then used until it is no longer valid.

8.7 XML interface

<dbTable TableName="testDBTable"

TableType="RunSubRun"

creationDate="031030"

maintainer="lange6@llnl.gov"

WriteXMLToDB="False"

OverrideDBWithXML="False"

XMLThenDB=’’False’’

DBName="test">

<dbTableColumn> Crate INTEGER </dbTableColumn>

<dbTableColumn> Module INTEGER 10 </dbTableColumn>

<xmlfile>

MippDatabase/xml/test/dbentry1.xml

</xmlfile>

</dbTable>

The tag xmlfile is one of the basic tags defined in the MippXML class.
In this file we define a table with name “testDBTable” that contains two
columns, “Crate” and “Module”. These columns are of an integer type.
The optional third argument specifies the maximum number of entries in
the column or the maximum length of the character string in VARCHAR
columns. For PostGreSQL, the maximum number of entries is not really

56

used except for being 1 or greater than one. If the default is specified (=1),
then arrays of numbers can not be used for that column. On the contrary, if
a number greater than one is specified, then arrays of any length are allowed.
Arrays of VARCHARs are not currently supported in the XML interface.

There are three database types, either “RunSubRun”, “Timestamp”, or
“OneRun”.

The flag “WriteXMLToDB” controls whether or not the data contained in
the XML file is written into the database. This should only be set to “True”
if you are loading new data into the database, and generally should be set to
“False”. If the flag “OverrideDBWithXML” is set to true, the values found
in the database for this table are overridden by those in XML. Similarly, if
the flag “XMLThenDB” is set, then values read from the XML are used as
the default, but if no valid value is found, the underlying database table is
used instead. Note that “WriteXMLToDB”, “OverrideDBWithXML”, and
“XMLThenDB” are mutually exclusive: your code will core dump if both are
set to “True”.

The file dbentry1.xml contains a “dbTableEntry”, which is the set of rows
that correspond to one database entry.

<dbTableEntry TableName="testDBTable"

TableType="RunSubRun"

runNumMin="1"

runNumMax="1000"

creator="lange6@llnl.gov">

<dbRow> 1, 1 </dbRow>

<dbRow> 1, 2 </dbRow>

<dbRow> 1, 3 </dbRow>

<dbRow> 1, 4 </dbRow>

<dbRow> 1, 5 </dbRow>

<dbRow> 2, 7 </dbRow>

<dbRow> 2, 4 </dbRow>

<dbRow> 2, 3 </dbRow>

<dbRow> 2, 2 </dbRow>

<dbRow> 2, 1 </dbRow>

</dbTableEntry>

57

In this case there are ten rows for this entry, each defining a value for the
Crate and the Module column. The order of the “dbRow” tag is required to
be the same as the order in which columns were declared in the “dbTable”
declaration.

This entry is valid for runs 1-1000. One may also specify a sub-run range.
In that case, the “runNumMin” and “runNumMax” must be equal.

In addition, arrays of numbers can be specified via

<dbRow> 2 2 3 10, 1 </dbRow>

where the “,” separates the columns in the table, and spaces separate the list
of numbers within a column.

8.8 Special characters

I do not have an authoritative list of special characters in SQL, specifically
PostGreSQL. However, the following should be avoided when defining table
names, column names, and in VARCHAR entries: “$”, “()”, “[]”, “,”, “;”,
“:”, “*”, “.”.

8.9 Concrete example: Ckov cable map

There are two pieces needed to implement and use a cable map in the
database. First, the table must be defined and loaded. Second, the table
must be retrieved.

8.9.1 Define and load a table into the database

The CkovReco package contains a simple executable to load a table and to
print out its content in the LoadCkovDB.cc executable:

#include <iostream>

#include <string>

#include <vector>

#include "MippXML/MXML.h"

#include "MippXML/MXMLStack.h"

#include "MippDatabase/xml/MXMLdbTableBuilder.h"

#include "MippDatabase/MdbTableDict.h"

58

#include "MippDatabase/MdbDatabase.h"

#include "MippDatabase/MdbTableRunSubRun.h"

#include "MippDatabase/MdbTableTimestamp.h"

#include <fstream>

//...

int main(int argc, char** argv)

{

MdbDatabase *dbFact=MdbDatabase::Instance();

MXML::Initialize();

MXML::ReadFile(argv[1]);

MdbTableDict *tableDict=MdbTableDict::Instance();

std::vector<std::string> tables;

tables.push_back("CkovReadout");

for (unsigned int i=0; i< tables.size(); ++i) {

MdbTableRunSubRun *table=

tableDict->GetTableRSR(tables[i]);

if (table) {

table->CacheAllDBRows();

table->printTable();

}

else{

std::cout << "Table " << tables[i] << " missing ??\n";

}

}

return 0;

}

The GNUmakefile of CkovReco looks like

ROOTCINT :=

59

SUBDIRS :=

BINS := LoadCkovDB

SIMPLEBINS := LoadCkovDB

LIB_TYPE := shared

LIB := lib$(PACKAGE)

LIBCXXFILES := $(wildcard *.cxx)

NODEP_LIBS +=

LOADLIBES += \

-lMippDatabaseXML \

-lMippDatabase \

-lMippDatabaseBase \

-lMippXML

###

include SoftRelTools/standard.mk

include SoftRelTools/arch_spec_root.mk

include SoftRelTools/arch_spec_xercesc.mk

include SoftRelTools/arch_spec_pgsql.mk

LoadCkovDB is run as

LoadCkovDB < xml-file >

An example xml file is

CkovReco/xml/loadCkovReadout.xml,

which looks like

<xmlfile>

CkovReco/xml/CkovReadout.xml

</xmlfile>

where CkovReco/xml/CkovReadout.xml defines the format of the cable map
table

<dbTable TableName="CkovReadout"

TableType="RunSubRun"

creationDate="040416"

60

maintainer="lange6@llnl.gov"

WriteXMLToDB="False"

OverrideDBWithXML="False"

XMLThenDB="False"

DBName="test">

<dbTableColumn> Mirror INTEGER </dbTableColumn>

<dbTableColumn> ADCCrate INTEGER </dbTableColumn>

<dbTableColumn> ADCSlot INTEGER </dbTableColumn>

<dbTableColumn> ADCChannel INTEGER </dbTableColumn>

<dbTableColumn> SpiderBox INTEGER </dbTableColumn>

<dbTableColumn> SpiderBoxChan INTEGER </dbTableColumn>

<dbTableColumn> TDCCrate INTEGER </dbTableColumn>

<dbTableColumn> TDCSlot INTEGER </dbTableColumn>

<dbTableColumn> TDCFirst INTEGER </dbTableColumn>

<xmlfile>CkovReco/maps/CkovReadout_v1.xml </xmlfile>

</dbTable>

The important items in the header are

• TableName

• TableType

• WriteXMLToDB True if you want to write the data defined in XML
to the database, false otherwise

• OverrideDBWithXML True if you want to use the data defined in XML
instead of data stored in the database.

The actual data is defined in CkovReadout v1.xml

<dbTableEntry TableName="CkovReadout"

TableType="RunSubRun"

runNumMin="1"

runNumMax="10000000"

creator = "lange6@llnl.gov">

<dbRow> 1, 3, 3, 1, 1, 1, 3, 8, -1 </dbRow>

where the dbRow gives an entry for each column defined in the “dbTable”
definition.

61

8.9.2 Retrieving data from the database in MIPP ex-
ecutables

The Ckov map defined in the section above is used in the raw2root executable,
in the R2REvent class. The database is currently too slow to be queried every
event, so a few variables are defined to store the relevant information, in this
case, the mirror number correspondence to ADC and TDC channel.

std::map<int,int> fCkovADCHash;

std::map<int,int> fCkovTDCHash;

These maps are filled in the DoCkov method:

static int first=1;

if (first == 1) {

first=0;

MdbDatabase *dbFact=MdbDatabase::Instance();

MXML::Initialize();

// make sure that WriteXMLToDB is False !

MXML::ReadFile("CkovReco/xml/loadCkovReadout.xml");

MdbTableDict *tableDict=MdbTableDict::Instance();

std::vector<std::string> cols;

// query the table and get the entry for the current run

// the last argument means that only the most recently stored

// set of entries will be retrieved. Otherwise, you’ll get all

// entries, but entries will be sorted according to load time

MdbAbsRelDBTable *mapTable =

tableDict->GetTableRSR("CkovReadout")->Select(

cols,this->fHeader.Run(),-1,0,0,0,’’Mirror’’);

std::string ADCCrate("ADCCrate");

std::string ADCSlot("ADCSlot");

std::string ADCChannel("ADCChannel");

std::string Mirror("Mirror");

std::string SpiderBoxChan("SpiderBoxChan");

std::string TDCFirst("TDCFirst");

62

std::string TDCCrate("TDCCrate");

std::string TDCSlot("TDCSlot");

// Loop over the rows retrieved from the database.

for (unsigned int i=0;

i<mapTable->NumberOfCachedRows(); ++i) {

// 1000*create + 100*slot + channel

fCkovADCHash[

1000*mapTable->getCachedTableDataPtr(

ADCCrate,i)->valInt()[0]

+100*mapTable->getCachedTableDataPtr(

ADCSlot,i)->valInt()[0]

+mapTable->getCachedTableDataPtr(

ADCChannel,i)->valInt()[0]] =

mapTable->getCachedTableDataPtr(

Mirror,i)->valInt()[0];

// 1000*create + 100*slot + channel

int spidChannel=mapTable->getCachedTableDataPtr(

SpiderBoxChan,i)->valInt()[0];

fCkovTDCHash[1000*mapTable->getCachedTableDataPtr(

TDCCrate,i)->valInt()[0]

+100*mapTable->getCachedTableDataPtr(

TDCSlot,i)->valInt()[0]

+ spidChannel] =

mapTable->getCachedTableDataPtr(Mirror,i)->valInt()[0];

}

}

In the code above “most recent” means that you’ll get the most recent
row corresponding to each unique entry in the column “Mirror”.

8.9.3 Adding data to tables in C++ code

The other common application of the database will be to add data in C++
applications, such as the high voltage monitoring. Here is an example for

63

how to do that for the CkovReadout table defined above

int main(int argc, char** argv) {

MdbDatabase *dbFact=MdbDatabase::Instance();

MXML::Initialize();

MXML::ReadFile(argv[1]);

MdbTableDict *tableDict=MdbTableDict::Instance();

MdbTableRunSubRun *table=tableDict->GetTableRSR(

std::string(‘‘CkovReadout’’));

MdbDatabase *dbFact=MdbDatabase::Instance();

std::vector<MdbAbsRelDBVar*> vars;

vars.push_back(dbFact->dbVar(int(100))); //mirror

vars.push_back(dbFact->dbVar(int(4))); //ADCCrate

vars.push_back(dbFact->dbVar(int(14))); //ADCSlot

vars.push_back(dbFact->dbVar(int(15))); //ADCChannel

vars.push_back(dbFact->dbVar(int(7))); //SpiderBox

vars.push_back(dbFact->dbVar(int(1))); //SpiderBoxChan

vars.push_back(dbFact->dbVar(int(4))); //TDCCrate

vars.push_back(dbFact->dbVar(int(13)); //TDCSlot

vars.push_back(dbFact->dbVar(int(1))); //TDCFirst

// runMin, subrunMin, runMax, subrunMax

table->InsertRow(vars,1,-1,1000,-1,-1);

//clean up

for (unsigned i=0; i<vars.size(); i++) delete vars[i];

return 0;

}

64

8.10 MippDatabase Classes

8.10.1 SQL basics

This section to be developed in time.
The basic SQL commands, as well as the pgsql interface that we are using,

are based on character strings. The basic layer on top of the pgsql (in Mip-
pDatabaseBase) is to convert strings to and from the actual variable types
(floats, etc). The interface used by MIPP tables is then formed from this
extra layer of code. In this way, we are exposed primarily to type specific
interfaces. However, in some cases, the underlying character string interface
means that some errors will only be caught at runtime, in particular in pars-
ing values from XML files. We have worked to make the interface so that
mistakes result in compile time errors, but this is not always possible.

8.10.2 Initialization

To initialize the database and read in the XML tables

MdbDatabase *dbFact=MdbDatabase::Instance();

MXML::Initialize();

MXML::ReadFile(argv[1]);

is needed in your executable. In this example, argv is the name of a top level
XML file.

See MippDatabase/xml/test/test/testDbXML.cc for an example (Mipp-
Database/xml/test/test.xml is an example input for this executable).

All tables needed by your job must be either defined in C++ code or read
in via the XML interface. This is so that the structure of the data is known
to the database interface.

8.10.3 Retrieving a table

To get a table read in via the XML interface:

MdbTableDict *tableDict=MdbTableDict::Instance();

MdbTableRunSubRun *table=

tableDict->GetTableRSR("testDBTable");

the “table” pointer will be null if the table is not found in the dictionary.
This means that it was not read in via the XML interface.

65

8.10.4 MdbDatabase class

The MdbDatabase class allows the specific implementation of the SQL data-
base to be hidden for the rest of MIPP code. Although only a PostGreSQL
based implementation is foreseen, this class would allow for other implemen-
tations to be used instead, with no changes to user code.

The MdbDatabase class is found in the MippDatabase package and is
used to create other database objects, as explained below.

8.10.5 Database variables

The base type for variables to be stored (or retrieved from) the database
is MdbAbsRelDBVar, which is found in the MippDatabaseBase package.
The implementation for PostGreSQL is MdbPostGresVar, found in the same
package.

Four variable types are currently implemented

1. Integer (MdbAbsRelDBVar::INTEGER)

2. Float (MdbAbsRelDBVar::FLOAT)

3. String (MdbAbsRelDBVar::VARCHAR)

4. Timestamp (MdbAbsRelDBVar::TIMESTAMP)

Arrays of each of these types are supported. Timestamps are implemented in
TTimeStamp, which is a part of ROOT. Times are assumed to be in GMT.

The interface to create a database variable object is a bit clumsy:

// do this once

MdbDatabase *dbFact=MdbDatabase::Instance();

// Remeber to delete five later

MdbAbsRelDBVar *five=dbFact->dbVar(int(5));

The current list of available methods to create database variables is

MdbAbsRelDBVar* dbVar(int val);

MdbAbsRelDBVar* dbVar(std::vector<int> val);

MdbAbsRelDBVar* dbVar(float val);

66

MdbAbsRelDBVar* dbVar(std::vector<float> val);

MdbAbsRelDBVar* dbVar(TTimeStamp val);

MdbAbsRelDBVar* dbVar(std::vector<TTimeStamp> val);

MdbAbsRelDBVar* dbVar(std::string val);

MdbAbsRelDBVar* dbVar(MdbAbsRelDBVar::RelDBVarType type,

std::string val);

The last of these allows you to enter directly the string to be passed to the
database. We suggest that this be used by experts only.

To retrieve values from the database variables, the following methods are
provided

std::vector<float> valFloat() const ;

std::vector<int> valInt() const ;

std::vector<std::string> valStr() const ;

std::vector<TTimeStamp> valCTS() const ;

Note that if the database variable is of a different type, then an empty vector
will be returned.

8.10.6 Selecting a subset of rows

The database implementation allows for quite a general select (from a single
table) query. We describe here the basic ones. For the RunSubRun-based
table, this is to search for the conditions valid for a given run and sub-run,
and for the Timestamp-based table to search for the conditions valid for a
given time stamp.

The method for the RunSubRun table is

MdbAbsRelDBTable* Select(

std::vector<std::string> cols,

int run, int subRun=-1,

TTimeStamp *loadTime=0,

MdbAbsRelDBConstraint *reqs=0,

MdbAbsRelDBOrder *orderBy=0,

std::string uniqKey=’’’’);

67

There are two required arguments. The first one is the list of columns you
would like returned. If the vector is empty, then all columns will be returned.
This is the recommended usage. Second, the run number you are interested
in. The other arguments are optional. The third argument is the sub-run
number, used only if the validity period of the conditions does not span run
numbers. Fourth, if you would like to ignore recently loaded conditions,
you can specify a time stamp. Rows in loaded into the database before this
time will be ignored. Next, is any additional constraints you would like to
use. This option is not documented yet. Sixth, is an option to specify the
order in which the rows should be returned. The default order is in the
reserve order in which rows were loaded into the database. The orderBy
option lets you further refine that order. This option is not yet documented.
The last argument allows you to specify if you would like to have only the
most recently loaded conditions returned by your query, keyed by the column
specified in the argument. If nothing is specified, then all valid rows will be
returned. If a column name is specified then exactly one row (the most recent
one) per value of the uniqKey column will be returned. So for example, if you
have loaded various sets of row, each set having a row per detector channel,
you can ask for the most recent row for each detector channel by specifying
the appropriate row for uniqKey.

The returned object is a “MdbAbsRelDBTable”, the code for which lives
in MippDatabaseBase. This class is described below.

An example Select (to get the rows corresponding to run 100) is:

MdbTableRunSubRun *table=

tableDict->GetTableRSR("testDBTable");

if (table) {

table->printTable();

// lets also do a simple search on this table.

std::vector<std::string> cols;

MdbAbsRelDBTable *resTable = table->Select(cols,100);

}

To avoid memory leaks, resTable should be deleted.

68

8.10.7 Creating XML files from a database table

It is simple to write out a database table in the XML format for future use.
For example, if you wish to test your algorithm changing only one number in
a database table, you could write out the database table, make your change,
and then override the information in the database with your changed XML
file for testing. Once your tests are successful, the same XML file (with a
minor change to the “WriteXMLToDB” parameter described above) can be
used to load the database with the new conditions.

The syntax for writing out to the XML format is

// get the table we want

MdbTableRunSubRun *table=

tableDict->GetTableRSR("testDBTable");

// make a stream for the output

std::ofstream fp("testOutput.runsubrun");

// make the XML file

table->MakeXMLFile(fp,true,0);

The three arguments to the MakeXMLFile method are:

1. (std::ofstream, required) The ofstream to write to

2. (bool, default = false) Control if the full table is to be read from the
database. If true, then only the cache of the table is used. If false, then
all data is printed.

3. (MdbAbsRelDBTable*, default = 0) The result of a Select that should
be printed instead of the nominal table in the MdbTableRunSubRun
object. You may be interested in printing the results of a “select” query
instead of the full table. The query will return a MdbAbsRelDBTable
object with your selected rows.

8.10.8 The MdbAbsRelDBTable class

An object of type MdbAbsRelDBTable is returned by queries to the database.
We document a subset of the functionality of this class here. The actual
implementation of this type for PostGreSQL is the MdbPostGresTable class.

To find the number of data rows and columns in the data, use these
methods:

69

virtual unsigned int NumberOfCachedRows()

std::string ColumnName(unsigned int i)

virtual unsigned int NumberOfColumns()

We expect that the only time MIPP users will use the MdbAbsRelDBTable
type is as a result of selecting a subset of information from a RunSubRun or
Timestamp table. In this case, the table “cache” contains the the result of
the query. So to find out the number of rows returned by your query, use the
NumberOfCachedRows method.

To retrieve the data from the the cache, use the getCachedTableData or
getCachedTableDataPtr methods:

virtual MdbAbsRelDBVar*

getCachedTableData(std::string columnName,

unsigned int rowNum);

virtual MdbAbsRelDBVar*

getCachedTableDataPtr(std::string columnName,

unsigned int rowNum);

The getCachedTableData method news the returned variable and gives own-
ership of the object to the calling method. In most cases this is unnecessary.

You can also print the cached table information in several ways

void printTable(std::ostream& o = std::cout);

void printTableHtml(std::ostream& o = std::cout);

void printTableTex(std::ostream& o = std::cout);

Further methods are documented in the header file. These tend to be
low level methods that should not in general be needed outside of the core
database code.

70

Chapter 9

Residual corrections to TPC
hits: TPCResCor

9.1 What is TPCResCor?

The reconstruction of the location of an ionization cloud from the information
recorded on the TPC pad plane is not an easy business. The electrons must
be tracked backwards through a rather inhomogeneous B field with some
assumption being made about the terminal velocity vDrift. Additionally, there
may be alignment uncertainties and possibly shaping time differences from
padrow to padrow. While we make every effort to calibrate and understand
each of these effects, there may continue to be systematic differences between
where hits are reconstructed and where we think they should be based on a
complete fit to the track. The package TPCResCor is designed to facilitate
the calculation and application of these residual offsets to the reconstructed
TPC hits.

9.2 Method

The offsets used by TPCResCor are arrived at iteratively. A track fitter (it
could be any fitter) computes the differences between the fitted track position
and each TPC hit as a function of the TPC hit location in x and y and pad
row address. These differences are accumulated and at the end of the run the
average offset in both x and y are computed as functions of the hit position
(x,y) and pad row address. To avoid biases from tails, only the center part

71

of the distribution (out to the FWHM) are used in the averages. The x, y
binning is configurable, but a typical binning is to use 8 bins in each of x and
y with bin edges located at x = (−50,−35,−20,−10, 0, 10, 20, 35, 50) cm,
and y = (−25,−15,−5, 0, 5, 15, 25, 35, 55) cm. The binning compromises
statistics, granularity, and simplicity. When offsets are requested for a given
TPC hit, the x and y offsets used are interpolated from the tabulated results
for that pad row.

The TPCResCor package is not intended to replace a good understanding
of the TPC hit reconstruction, but is rather intended to make the last small
changes to the hit positions after our best knowledge has been applied.

9.3 Using TPCResCor

Use of the package is illustrated in this example code fragment:

#include "TPCResCor/TPCResCorMap.h"

static TPCResCorMap* gsTPCResCor = 0;

void Module::NewRun(int run, int subrun)

{

if (gsTPCResCor) { delete gsTPCResCor; gsTPCResCor = 0; }

if (gsTPCResCor==0) {

gsTPCResCor = new TPCResCorMap(run)

}

}

void Module::Reco(EDMEventHandle& evt)

{

double hitx; // TPC hit x position

double hity; // TPC hit y position

double hitz; // TPC hit z position

int ipadrow; // TPC hit pad row number

// Load uncorrected hit position into hitx, hity, hitz, and

// ipadrow...

// Update the x/y position using the map

gsTPCResCorMap->AdjustHit(&hitx,&hity,ipadrow);

}

72

The code creates a new map at the “new run” boundary. By default,
the code will go to the database for the map which is most appropriate
for the specified run number. Alternately, one can load the table from a
text file. In that case, you would instantiate the TPCResCorMap object
using two arguments, the run number, and the name of the text file you
want to load: new TPCResCorMap(1000,"myfile.txt"). We plan to apply
the adjustments at the time that the TPC hits are created and stored, so
there should be only one place (in TPCRecoJP) where these offsets need be
applied. Therefore, you may assume that TPC hits have been adjusted for
you and that any further adjustments would be an over correction. If you
want to be sure the adjustments are being applied at the TPC reconstruction
stage in your job check the XML configuration parameters for the TPCRecoJP
modules.

9.4 Updating TPCResCor

As mentioned in the introduction, the method for producing the offset ta-
bles is by an examination of track residuals. Global track fitters (eg. SP-
Fit, SPTrk, and Kalman) can update the tables by having their residu-
als accumulated and analyzed. The class that aids this process is called
TPCResCorMaker. Here is some code:

#include "TPCResCor/TPCResCorMap.h"

#include "TPCResCor/TPCResCorMaker.h"

static TPCResCorMap* gsTPCResCorMap = 0;

static TPCResCorMaker* gsTPCResCorMaker = 0;

void Module::NewRun(int run, int subrun)

{

// Initialize the map and the makers

if (gsTPCResCorMap) delete gsTPCResCorMap;

if (gsTPCResCorMaker) delete gsTPCResCorMaker;

gsTPCResCorMap = new TPCResCorMap(run);

gsTPCResCorMaker = new TPCResCorMaker(gsTPCResCorMap);

}

void Module::Reco(EDMEventHandle& evt)

{

73

for (i=0; i<nHitTpc; ++i) {

double xtpc; // X position of a TPC hit used in the track fit

double ytpc; // Y position of a TPC hit used in the track fit

int ipadrow; // Pad row hit was recorded on

// For each TPC hit i, compute the track position and find the

// residual. Assume in the following that xtpc,ytpc are the

// TPC hit position for a hit located at ipadrow and xtrk,ytrk are

// the best-fit track positions

// Ask the maker to record this residual measurement

gsTPCResCorMaker->AddResidual(xtpc, xtrk, ytpc, ytrk, ipadrow);

}

}

void Module::EndRun(int run, int subrun)

{

// Ask the maker to compute the best residual offsets and update the

// map it was instantiated with

gsTPCResCorMaker->Finalize();

// Write the updated map to the database

gsTPCResCorMap->WriteToDB();

}

The above code builds two classes. The first, TPCResCorMap, is the map
of offsets that were used to adjust the TPC hits. The map is recalled by
run number. The second, TPCRecCorMaker, is a helper class which performs
the analysis of the residuals and updates the map for remaining differences.
After being initialized each residual to TPC hits is logged by the maker. At
the end of the run, the residual distributions are analyzed, fit, and updates
to the residual map are pushed to the database. Alternately, the results can
be pushed to a flat text file using WriteTableToFile("myfile.txt").

9.5 Database Tables

The residual corrections are stored in two sets of tables defined by the
TPCResCorDB.xml file. The first, TPCResForFormat records the parameters

74

used to generate the tables and contains information about the number of x
bins, number of y bins, the number of pad rows used in the table. It also
holds an array which mark the edges of the x bins and y bins. In principle,
the format can be different for different run numbers which may aid in future
reprocessing of the data should the format change. The second table is signif-
icantly larger and holds the actual residual data. This table, TPCResCorData
holds a flag marking the correction as either a correction for x or y coor-
dinate, the x, y bin numbers, and a list of offsets for each of the pad rows
(typically an array of 128 numbers). To start the process of generating these
tables, the database must be primed. A utility is provided for this in the
TPCResCor/test directory:

mkseedfile --read tpc-resid-map-seed.txt --write db

which reads an text file defining the table format, sets the offsets all to zero,
and loads the zeroed table to the database. The run number attached to this
empty map is zero by default but can be set using the --run option. When
processing a run, care should be taken to understand the starting point for
the iterations. For example, if the map is initialized based on a run number,
the starting point may be the current best map for the nearest run number. I
suggest seeding the map from the zeroed text file tpc-resid-map-seed.txt
on the first iteration rather than seeding the results from a previous run
number. This can be accomplished from the TPCResCor package using:

> gmake tbin

> mkseedfile --run 123450 --read tpc-resid-map-seed.txt --write db

While seeding the iterations from the result of the previous run’s results
might produce a faster convergence, it introduces a complicated dependency
of the reconstruction performance on the order in which runs were processed
possibly resulting in a smoothing of discontinuous changes in running condi-
tions.

75

